Symmetric and Hermitian Matrix
@(LinearAlgebra)
Symmetric Matrix
Hermitian Matrix
- Diagonal entries들을 기준으로 entry들이 complex conjugate관계임.
- Hermitian Matrix Symmetric Matrix
Properties of Hermitian Matrix
- All Hermitian matrices have eigenvalues of real number.
- In the Hermitian matrices, all eigenvectors are orthonormal respectively.
Proof
1.
- is an eigenvalue so that it's just a scalar.
- So, it can be moved the first position
- is an Hermitian matrix.
- also is a scalar, so that it never be an complex number. ()
- 역시 항상 real number임 ()
- 와 가 real number이므로, 도 real number임.
2.
- eigenvalue 이 서로 다르다고 가정하고, 이에 대응하는 eigenvector 이 있다고 하자. 이 경우,
- 즉, 가 성립.
- eigenvalue들이 각각 다르다고 했으므로, 이 등식이 성립하려면 다음이 성립해야함.
- 이는 inner product가 0인 경우로, 와 가 orthogonal임을 의미함.
- 모든 orthogonal 한 관계의 vector들은 length를 1로 만들 수 있으므로 orthonormal한 관계가 성립하게 됨.
Eigendecomposition
where
- : eigenvvector들을 column vector로 가지는 eigenvector matrix
- :의 column vector들에 대응하는 eigenvalue들을 diagonal entries로 가지는 diagonal matrix. eigenvalue matrix로 불리기도 하며 로 표기되기도 함.
가 symmetric matrix인 경우,
where
- is an eigenvector matrix like . All eigenvectors of symmetric matrix can be orthonormal!
Diagonalization of Symmetric Matrices
- In general, is diagonalizable if and only if linearly independent eigenvectors exist.
- How about a symmetric matrix , where ?
- is always diagonalizable.
- Furthermore, is orthogonally diagonalizable, meaning that their eigenvectors are not only linearly independent, but also orthogonal to each other.
Spectral Theorem of Symmetric Matrices
Consider a symmetric matrix , where .
- has real eigenvalues, counting multiplicities.
- The dimension of the eigenspace for each eigenvalue equals the multiplicity of as a root of the characteristic equation.
- The eigenspaces are mutually orthogonal. That is, eigenvectors corresponding to different eigenvalues are orthogonal. • To sum up, is orthogonally diagonalizable. • Proofs in Lay Ch7.1
Spectral Decomposition
Eigendecomposition of a symmetric matrix, also known as spectral decomposition, is represented as
- Each term, can be viewed as a projection matrix onto the subspace spanned by , scaled by its eigenvalue .
Note
- 가 실수이며, symmetric matrix인 경우, A의 eigenvector들은 orthonormal이므로 이들을 column vector로 가지는 는 orthonormal matrix(or orthogonal matrix, 직교행렬) 임.
- 이 경우, 임.
가 Hermitian matrix인 경우,
where
- is an eigenvector matrix like and . is an unitary matrix
Unitary matrix
다음이 성립하는 matrix.
- 모든 column vector들이 orthonormal임.
- 모든 eigenvalue들의 절대값이 1임.
- Unitary matrix는 normal matrix의 하나임.
Note
Fourier Transform을 matrix multiplication으로 표현할 경우, 사용되는 matrix(Fourier matrix라고 불림)는 Unitary matrix임.
Normal matrix(정규행렬)
complex square matrix 중 다음을 만족하는 matrix A를 normal matrix라고 부름.