Symmetric and Hermitian Matrix

@(LinearAlgebra)

Symmetric Matrix

Hermitian Matrix

  • Diagonal entries들을 기준으로 entry들이 complex conjugate관계임.
  • Hermitian Matrix Symmetric Matrix

Properties of Hermitian Matrix

  1. All Hermitian matrices have eigenvalues of real number.
  2. In the Hermitian matrices, all eigenvectors are orthonormal respectively.

Proof

1.

  • is an eigenvalue so that it's just a scalar.
  • So, it can be moved the first position

  • is an Hermitian matrix.
  • also is a scalar, so that it never be an complex number. ()
  • 역시 항상 real number임 ()

  • 가 real number이므로, 도 real number임.

2.

  • eigenvalue 이 서로 다르다고 가정하고, 이에 대응하는 eigenvector 이 있다고 하자. 이 경우,

  • 즉, 가 성립.
  • eigenvalue들이 각각 다르다고 했으므로, 이 등식이 성립하려면 다음이 성립해야함.

  • 이는 inner product가 0인 경우로, 가 orthogonal임을 의미함.
  • 모든 orthogonal 한 관계의 vector들은 length를 1로 만들 수 있으므로 orthonormal한 관계가 성립하게 됨.

Eigendecomposition

where

  • : eigenvvector들을 column vector로 가지는 eigenvector matrix
  • :의 column vector들에 대응하는 eigenvalue들을 diagonal entries로 가지는 diagonal matrix. eigenvalue matrix로 불리기도 하며 로 표기되기도 함.

가 symmetric matrix인 경우,

where

  • is an eigenvector matrix like . All eigenvectors of symmetric matrix can be orthonormal!

Diagonalization of Symmetric Matrices

  • In general, is diagonalizable if and only if linearly independent eigenvectors exist.
  • How about a symmetric matrix , where ?
  • is always diagonalizable.
  • Furthermore, is orthogonally diagonalizable, meaning that their eigenvectors are not only linearly independent, but also orthogonal to each other.

Spectral Theorem of Symmetric Matrices

Consider a symmetric matrix , where .

  • has real eigenvalues, counting multiplicities.
  • The dimension of the eigenspace for each eigenvalue equals the multiplicity of as a root of the characteristic equation.
  • The eigenspaces are mutually orthogonal. That is, eigenvectors corresponding to different eigenvalues are orthogonal. • To sum up, is orthogonally diagonalizable. • Proofs in Lay Ch7.1

Spectral Decomposition

Eigendecomposition of a symmetric matrix, also known as spectral decomposition, is represented as

  • Each term, can be viewed as a projection matrix onto the subspace spanned by , scaled by its eigenvalue .

Note

  • 가 실수이며, symmetric matrix인 경우, A의 eigenvector들은 orthonormal이므로 이들을 column vector로 가지는 orthonormal matrix(or orthogonal matrix, 직교행렬) 임.
  • 이 경우, 임.

가 Hermitian matrix인 경우,

where

  • is an eigenvector matrix like and . is an unitary matrix

Unitary matrix

다음이 성립하는 matrix.

  • 모든 column vector들이 orthonormal임.
  • 모든 eigenvalue들의 절대값이 1임.
  • Unitary matrix는 normal matrix의 하나임.

Note

Fourier Transform을 matrix multiplication으로 표현할 경우, 사용되는 matrix(Fourier matrix라고 불림)는 Unitary matrix임.

Normal matrix(정규행렬)

complex square matrix 중 다음을 만족하는 matrix A를 normal matrix라고 부름.

results matching ""

    No results matching ""