

Detecting Corners

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

Why detect corners?

Image alignment (homography, fundamental matrix)
3D reconstruction
Motion tracking
Object recognition
Indexing and database retrieval
Robot navigation

Planar object instance recognition

Database of planar objects

Instance recognition

3D object recognition

Database of 3D objects

3D objects recognition

Recognition under occlusion

Location Recognition

Robot Localization

Map built over time

Example: Image Matching

How would you find corresponding points?

NASA Mars Rover images

Where are the corresponding points?

What type of features were you trying to match?
Explain to me your thought process.

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?
 a corner

How do you find a corner?

How do you find a corner?
 [Moravec 1980]

Easily recognized by looking through a small window Shifting the window should give large change in intensity

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Design a program to detect corners

(hint: use image gradients)

Finding corners (a.k.a. PCA)

1.Compute image gradients over small region
2. Subtract mean from each image gradient
3.Compute the covariance matrix
4. Compute eigenvectors and eigenvalues

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

5.Use threshold on eigenvalues to detect corners

1. Compute image gradients over a small region (not just a single pixel)

1. Compute image gradients over a small region

(not just a single pixel)

array of x gradients

$$
I_{x}=\frac{\partial I}{\partial x}
$$

array of y gradients

$$
I_{y}=\frac{\partial I}{\partial y}
$$

visualization of gradients

What does the distribution tell you about the region?

distribution reveals edge orientation and magnitude

How do you quantify orientation and magnitude?
2. Subtract the mean from each image gradient

2. Subtract the mean from each image gradient

constant intensity gradient

2. Subtract the mean from each image gradient

plot of image gradients

2. Subtract the mean from each image gradient

constant intensity gradient

3. Compute the covariance matrix

3. Compute the covariance matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\sum_{p \in \in} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]} \\
& I_{x}=\frac{\partial I}{\partial x} \\
& I_{y}=\frac{\partial I}{\partial y} \\
& \sum_{p \in P} I_{x} I_{y}=\operatorname{sum}(\\
& \text { array of } x \text { gradients } \\
& I_{y}=\frac{\partial I}{\partial y} \\
& \text { array of y gradients }
\end{aligned}
$$

Some mathematical background...

Error function

Change of intensity for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Error function approximation

Change of intensity for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

Second-order Taylor expansion of $E(u, v)$ about $(0,0)$ (bilinear approximation for small shifts):

$$
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{l}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{v v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Bilinear approximation

For small shifts $[u, v]$ we have a 'bilinear approximation':

Change in appearance for a shift [u,v]

$$
E(u, v) \cong[u, v] M
$$

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

'second moment' matrix

 'structure tensor'$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

By computing the gradient covariance matrix...

$$
\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

we are fitting a quadratic to the gradients over a small image region

Visualization of a quadratic

The surface $E(u, v)$ is locally approximated by a quadratic form

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Which error surface indicates a good image feature?

What kind of image patch do these surfaces represent?

4. Compute eigenvalues and eigenvectors

eig(M)

4. Compute eigenvalues and eigenvectors

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
$M-\lambda I$

(returns a polynomial)

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
$M-\lambda I$
(returns a polynomial)
2. Find the roots of $\underset{\substack{\text { (returns eigenvalues) }}}{\operatorname{det}}(M-\lambda I)=0$

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
$M-\lambda I$
(returns a polynomial)
2. Find the roots of $\underset{\substack{\text { (returns eigenvalues) }}}{\operatorname{del}(M-\lambda I)=0}$
3. For each eigenvalue, solve (returns eigenvectors)
$(M-\lambda I) e=0$

Visualization as an ellipse

Since M is symmetric, we have $M=R^{-1}$

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]_{\text {Eigenvectors }}^{T} \text { Eigenvalues }}_{\text {Eigenvectors }}
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
3.25 & 1.30 \\
1.30 & 1.75
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]^{T}
$$

Eigenvalues

$$
\mathbf{A}=\left[\begin{array}{ll}
7.75 & 3.90 \\
3.90 & 3.25
\end{array}\right]=\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 10
\end{array}\right]\left[\begin{array}{cc}
0.50 & -0.87 \\
-0.87 & -0.50
\end{array}\right]^{T}
$$

Eigenvectors

interpreting eigenvalues

λ_{2}

interpreting eigenvalues

interpreting eigenvalues

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

Think of a function to score 'cornerness'

5. Use threshold on eigenvalues to detect corners

5. Use threshold on eigenvalues to detect corners

 (a function of)

5. Use threshold on eigenvalues to detect corners

 (a function of)λ_{2}

corner

Eigenvalues need to be bigger than one.

$$
R=\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

Can compute this more efficiently...

5. Use threshold on eigenvalues to detect corners

 (a function of)λ_{2}

Harris \& Stephens (1988)

$$
R=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)
$$

$$
\begin{gathered}
\text { Kanade \& Tomasi (1994) } \\
R=\min \left(\lambda_{1}, \lambda_{2}\right)
\end{gathered}
$$

Nobel (1998)

$$
R=\frac{\operatorname{det}(M)}{\operatorname{trace}(M)+\epsilon}
$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."1988.

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} \quad I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}} \quad S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \quad S_{x y}=G_{\sigma^{\prime}} * I_{x y}
$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.
4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Corner response

rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

intensity changes

Partial invariance to affine intensity change
\checkmark Only derivatives are used => invariance to intensity shift $I \rightarrow I+b$
\checkmark Intensity scale: $I \rightarrow a I$

The Harris detector not invariant to changes in ...

Multi-scale Detection

16-385 Computer Vision

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

r

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

r

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

edge!

corner!

How can we make a feature detector scale-invariant?

How can we automatically select the scale?

Find local maxima in both position and scale

Laplacian filter

-20

Original signal

Highest response when the signal has the same characteristic scale as the filter
characteristic scale - the scale that produces peak filter response

characteristic scale

Multi-scale
 2D Blob detection

What happens if you apply different Laplacian filters?

Full size

3/4 size

sigma=2.1

sigma=4.2

sigma=6

sigma $=9.8$

sigma=15.5

sigma=17

What happened when you applied different Laplacian filters?

sigma=2.1

sigma=4.2

sigma $=6$

sigma $=9.8$

sigma=15.5

sigma=17

What happened when you applied different Laplacian filters?

4.2

15.5

6.0

17.0

optimal scale

Full size image

3/4 size image

optimal scale

Full size image

3/4 size image
cross-scale maximum

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid
if local maximum and cross-scale
save scale and location of feature

