

Detecting Corners

16-385 Computer Vision Carnegie Mellon University (Kris Kitani)

Why detect corners?

Image alignment (homography, fundamental matrix)

3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval

Robot navigation

Planar object instance recognition

Database of planar objects

Instance recognition

3D object recognition

Database of 3D objects

3D objects recognition

Recognition under occlusion

Location Recognition

Robot Localization

Map built over time

Example: Image Matching

How would you find corresponding points?

NASA Mars Rover images

Where are the corresponding points?

What type of features were you trying to match? Explain to me your thought process.

Pick a point in the image. Find it again in the next image.

What type of feature would you select?

Pick a point in the image. Find it again in the next image.

What type of feature would you select?

Pick a point in the image. Find it again in the next image.

What type of feature would you select? a corner

How do you find a corner?

How do you find a corner?

[Moravec 1980]

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Design a program to detect corners

(hint: use image gradients)

Finding corners

(a.k.a. PCA)

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3.Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners

$$I_y = \frac{\partial I}{\partial y}$$

$$\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

1. Compute image gradients over a small region (not just a single pixel)

1. Compute image gradients over a small region (not just a single pixel)

array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

visualization of gradients

What does the distribution tell you about the region?

distribution reveals edge orientation and magnitude

How do you quantify orientation and magnitude?

2. Subtract the mean from each image gradient

2. Subtract the mean from each image gradient

plot of image gradients

2. Subtract the mean from each image gradient

gradient

3. Compute the covariance matrix

3. Compute the covariance matrix

$$\begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y
\end{bmatrix}$$

$$I_x = \frac{\partial I}{\partial x} \qquad \qquad I_y = \frac{\partial I}{\partial y}$$

$$\sum_{p \in P} I_x I_y = \text{Sum} \Big(\begin{array}{c} & \star & \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \text{array of x gradients} \end{array} \Big)$$
 array of y gradients

Where does this covariance matrix come from?

Some mathematical background...

Error function

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^2$$
Error Window Shifted Intensity function function

Window function
$$w(x,y) =$$

1 in window, 0 outside Gaussian

Error function approximation

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0) (bilinear approximation for small shifts):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Bilinear approximation

For small shifts [u,v] we have a 'bilinear approximation':

Change in appearance for a shift [u,v]

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

'second moment' matrix 'structure tensor'

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

By computing the gradient covariance matrix...

$$\begin{bmatrix}
\sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\
\sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \\
p \in P
\end{bmatrix}$$

we are fitting a quadratic to the gradients over a small image region

Visualization of a quadratic

The surface E(u,v) is locally approximated by a quadratic form

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Which error surface indicates a good image feature?

What kind of image patch do these surfaces represent?

4. Compute	eigenvalues	s and eiger	vectors

eig(M)

eigenvalue

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of $M-\lambda I$ (returns a polynomial)

$$M - \lambda I$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial $\det(M-\lambda I)=0$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

Visualization as an ellipse

Since M is symmetric, we have $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{T}$$
Eigenvectors
Eigenvectors

$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{T}$$
Eigenvectors

Eigenvectors

$$\mathbf{A} = \begin{bmatrix} 3.25 & 1.30 \\ 1.30 & 1.75 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

$$\mathbf{A} = \begin{bmatrix} 7.75 & 3.90 \\ 3.90 & 3.25 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

interpreting eigenvalues

$$\lambda_2 >> \lambda_1$$

What kind of image patch does each region represent?

$$\lambda_1 \sim 0$$
 $\lambda_2 \sim 0$

$$\lambda_2 \sim 0$$

$$\lambda_1 >> \lambda_2$$

interpreting eigenvalues

interpreting eigenvalues

5. Use threshold on eigenvalues to detect corners

Think of a function to score 'cornerness'

 λ_1

5. Use threshold on eigenvalues to detect corners

Think of a function to score 'cornerness'

5. Use threshold on eigenvalues to detect corners (a function of)

Use the smallest eigenvalue as the response function

$$R = \min(\lambda_1, \lambda_2)$$

5. Use threshold on eigenvalues to detect corners (a function of)

corner

Eigenvalues need to be bigger than one.

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

5. Use threshold on eigenvalues to detect corners (a function of)

 λ_2

corner

$$R = \det(M) - \kappa \operatorname{trace}^{2}(M)$$

$$R \ll 0$$

flat

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$trace\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

Harris & Stephens (1988)

$$R = \det(M) - \kappa \operatorname{trace}^2(M)$$

Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$R = \frac{\det(M)}{\operatorname{trace}(M) + \epsilon}$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

1. Compute x and y derivatives of image

$$I_{x} = G_{\sigma}^{x} * I \qquad I_{y} = G_{\sigma}^{y} * I$$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x$$
 $I_{y^2} = I_y \cdot I_y$ $I_{xy} = I_x \cdot I_y$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

4. Define the matrix at each pixel

$$M(x,y) = \begin{bmatrix} S_{x^2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y^2}(x,y) \end{bmatrix}$$

5. Compute the response of the detector at each pixel

$$R = \det M - k (\operatorname{trace} M)^2$$

6. Threshold on value of R; compute non-max suppression.

Corner response

Thresholded corner response

Non-maximal suppression

rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

intensity changes

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$

Multi-scale Detection

16-385 Computer Vision

Properties of the Harris corner detector

Rotation invariant?

Properties of the Harris corner detector

Rotation invariant?

Properties of the Harris corner detector

Rotation invariant? Scale invariant? edge! corner!

Find local maxima in both position and scale

Laplacian filter

Highest response when the signal has the same **characteristic scale** as the filter

characteristic scale - the scale that produces peak filter response

characteristic scale

Multi-scale 2D Blob detection

What happens if you apply different Laplacian filters?

Full size

3/4 size

What happened when you applied different Laplacian filters?

Full size 3/4 size

What happened when you applied different Laplacian filters?

Full size 3/4 size

optimal scale

optimal scale

cross-scale maximum

implementation

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid if local maximum and cross-scale

save scale and location of feature

